آموزش آنلاین

استراتژی های معاملات الگوریتمی

ارزیابی استراتژی معاملات زوجی با رویکرد فاصله‏ای در بورس اوراق بهادار تهران

معاملات الگوریتمی در سالهای اخیر، یکی از اصلی‌ترین زمینه‌های صنعت مالی بوده است. این نوع معاملات شامل استراتژی‌های معاملاتی مبتنی بر برنامه‌های کامپیوتری جهت تصمیم‌گیری برای ارسال سفارشات هستند. استراتژی معاملات زوجی یکی از مشهورترین و در عین حال قابل فهم‏ترین روش‌های معاملات الگوریتمی است. به منظور پیاده‏سازی استراتژی معاملات زوجی می‏توان از چندین رویکرد مختلف و یا ترکیبی از این رویکردها بهره برد. یکی از این رویکرد‌ها، استراتژی های معاملات الگوریتمی رویکرد فاصله‏ای است. در این پژوهش، به منظور به کارگیری این استراتژی، زوج سهم‌ها از صنعت استخراج کانه های فلزی و داده‌های قیمت در بازه‏ی زمانی مربوط به سال 1395 انتخاب شده‎اند. سپس با اعمال استراتژی زوجی و پس‌آزمایی آن، عملکرد استراتژی معاملات زوجی با استراتژی خرید و نگهداری مقایسه شده است. نتایج پژوهش نشان می‌دهد که با فرض وجود سیستم فروش استقراضی و در محدوده آستانه مطلوب، بازدهی معاملات زوجی از استراتژی خرید و نگهداری بیشتر خواهد بود.

کلیدواژه‌ها

  • معاملات الگوریتمی
  • استراتژی معاملات زوجی
  • رویکرد فاصله‏ای
  • فرصت آربیتراژی
  • استراتژی خرید و نگهداری
  • انتخاب سهم

عنوان مقاله [English]

Evaluation of Pairs Trading Strategy Using Distance Approach at Tehran Stock Exchange

نویسندگان [English]

  • Masood Tadi 1
  • Majid Abkar 2
  • Vahid Motaharinia 1

Algorithmic trading has become one of the main strategies in financial industry. This kind of trading involves trading strategies based on computer programs to decide whether to send their orders. Pairs trading strategy is one of the most popular and however, most understandable strategies in algorithmic trading. To implement a pairs trading strategy we can utilize several approaches or a combination of them. In this paper the distance approach has been considered. In this approach the two stocks that have least square distance between their normalized prices are being chosen for pairs trading. In this study, in order to implement this strategy, shares pair of metallic ores mining industry and price data in the year of 1395 have been selected. The strategies and the test, performance test trading strategies buy and hold strategy compared. In this paper all of stocks are selected from mining of metal ore industry during the first 9 months of the 1392 SH. Finally, the performance of pairs trading strategy is compared with buy and hold strategy and after that the favorable range of threshold and optimum threshold size is calculated.

کلیدواژه‌ها [English]

  • Algorithmic trading
  • Pairs trading strategy
  • Distance approach
  • Arbitrage opportunity
  • Buy and Hold Strategy
  • Stock Selection

مراجع

* پاکیزه کامران؛ اخوان چایجان، کوثر و صالحی، پیام(1391) کاربرد استراتژی معاملات جفتی در بازار قراردادهای آتی سکه طلای بهار آزادی، نهمین کنفرانس بین‌المللی مهندسی صنایع، دانشگاه صنعتی خواجه نصیرالدین طوسی

* رحمانی علی، سرهنگی حجت، (1390)، تحلیل عوامل مؤثر بر استراتژی‏های معاملاتی مبتنی بر بازده سهام، مجله مهندسی مالی و مدیریت اوراق بهادار، شماره نهم.

* عسگری محسن، ابو زهرا، (1391)، بررسی اثربخشی استراتژی معاملات جفتی بر روی قراردادهای آتی سکه با ترکیب رویکردهای تصادفی و هم‏انباشتگی، سومین کنفرانس ریاضیات مالی و کاربردها، دانشگاه سمنان.

* فلاحپور سعید، حکیمیان حسن، (1396)، بررسی عملکرد سیستم معاملات زوجی در بورس اوراق بهادار تهران: رویکرد هم‌انباشتگی و بررسی نسبت سورتینو، مجله مهندسی مالی و مدیریت اوراق بهادار، شماره سی‌ام.

* Alexander, C., & Dimitriu, A. (2002). The cointegration alpha: Enhanced index tracking and long-short equity market neutral strategies. ISMA Discussion papers in Finance, 8.

* Anderson, K., & Brooks, C. (2006). Decomposing the price-earnings ratio. Journal of Asset Management, 6(6), 456-469.

* Andrade, S., Di Pietro, V., & Seasholes, M. (2005). Understanding the profitability of pairs trading. Unpublished working paper, UC Berkeley, Northwestern University.

* Balsara, N., & Zheng, L. (2006). Profiting from past winners and losers. Journal of Asset Management, 6(5), 329-344.

* Bowen, David A., and Mark C. Hutchinson. "Pairs Trading in the UK Equity Market Risk and Return." Available at SSRN 2350113 (2013).

* Brooks, C., Katsaris, A., & Persand, G. (2005). Timing is everything: A comparison and evaluation of market timing strategies. Available at SSRN 834485.

* Dueker, M., & Neely, C. J. (2007). Can Markov switching models predict excess foreign exchange returns?. Journal of Banking & Finance, 31(2), 279-296.

* Eftekhari, B. (1997). Markov Regime Switching Model as a Trading Tool (No. 97-af34). Faculty of Economics, University of Cambridge.

* Engelberg, J., Gao, P., & Jagannathan, R. (2009, November). An anatomy of pairs trading: the role of idiosyncratic news, common information and liquidity. In Third Singapore International Conference on Finance.

* Fernández-Rodríguez, F., Sosvilla-Rivero, S., & Andrada-Félix, J. (2004). Nearest-neighbour predictions in foreign exchange markets (pp. 297-325). Springer Berlin Heidelberg.

* Galenko, A., Popova, E., & Popova, I. (2007). Trading in the Presence of Cointegration. Available at SSRN 1023791.

* Gatev, E., Goetzmann, W. N., & Rouwenhorst, K. G. (2006). Pairs trading: Performance of a relative-value arbitrage rule. Review of Financial Studies, 19(3), 797-827.

* Huck, N. (2009). Pairs selection and outranking: An application to the S&P 100 index. European Journal of Operational Research, 196(2), 819-825.

* Huck, N. (2010). Pairs trading and outranking: The multi-step-ahead forecasting case. European Journal of Operational Research, 207(3), 1702-1716.

* Nath, P. (2003). High frequency pairs trading with us treasury securities: Risks and rewards for hedge funds. Available at SSRN 565441.

* Papadakis, G., & Wysocki, P. (2007). Pairs trading and accounting information. Boston University and MIT Working Paper.

* Park, Cheol-Ho and Irwin, Scott H., The Profitability of Technical Analysis: A Review (October 2004). AgMAS Project Research Report No. 2004-04.

* Perlin, Marcelo Scherer. "Evaluation of pairs-trading strategy at the Brazilian financial market." Journal of Derivatives & Hedge Funds 15.2 (2009): 122-136.

* Ramezanifar, E., Mohammadi, S., Rad, H., & Beyty, S. (2015). Pairs Trading Using Fractional Cointegration Approach and Its Comparison with Cointegration Approach. Available at SSRN 2614240

* Siganos, A., & Chelley-Steeley, P. (2006). Momentum profits following bull and bear markets. Journal of Asset Management, 6(5), 381-388.

* Vidyamurthy, G. (2004). Pairs Trading: quantitative methods and analysis (Vol. 217). John Wiley & Sons

معاملات الگوریتمی چیست؟

معاملات الگوریتمی چیست؟

معاملات الگوریتمی (Algorithmic Trading) معاملات خودکار، تجارت به روش جعبه سیاه یا معاملات الگویی نیز نامیده می‌شود. در این نوع از معاملات، از یک برنامه رایانه‌ای استفاده می‌شود که مجموعه‌ای از دستورالعمل‌های تعریف شده (الگوریتم) را برای انجام معاملات به کار می‌گیرد.

به گزارش شهر بورس، در تعریف‌های مربوط به تجارت و علوم اقتصادی آورده شده است که این نوع از معامله می‌تواند با سرعت و فرکانس سود کسب کند که برای انسان انجام آن کاملاً غیرممکن است.

از معاملات الگوریتمی چه می‌دانید؟

معاملات الگوریتمی علاوه بر فرصت‌های پرسودی که برای فرد تجارت‌کننده دارد، با درک و تحلیل تأثیرات مربوط به عواطف انسانی بر فعالیت‌های تجاری معاملات را به نحو سیستماتیک‌تری انجام می‌دهد. به نظر می‌رسد تجارت الگوریتمی عامل انسانی را حذف می‌کند و در عوض از استراتژی‌های مبتنی بر آمار از پیش تعیین شده پیروی می‌کند که می‌توانند هفت روز هفته ساعت و توسط کامپیوترها با حداقل نظارت اجرا شوند.

رایانه‌ها می‌توانند مزایای متعددی نسبت به معامله‌گران انسانی ارائه دهند. برای اولین بار، آنها می‌توانند تمام روز، بدون خواب، فعال بمانند.

آن‌ها همچنین می‌توانند داده‌ها را به طور دقیق تجزیه و تحلیل کنند و به تغییرات میلی ثانیه پاسخ دهند. علاوه بر این، آنها هرگز احساسات را در تصمیم‌گیری‌های خود فاکتور نمی‌گیرند.

به همین دلیل، مدت‌هاست که بسیاری از سرمایه‌گذاران فهمیده‌اند که ماشین‌آلات می‌توانند معامله‌گران عالی داشته باشند، با توجه به اینکه آنها از استراتژی‌های صحیح استفاده می‌کنند.

چرا معاملات الگوریتمی؟

بیشتر استراتژی‌های معاملات الگوریتمی حول شناسایی فرصت‌ها در بازار بر اساس آمار است. تجارت لحظه‌ای به دنبال پیروی از روندهای فعلی است و استراتژی‌های یادگیری ماشینی سعی می‌کنند فلسفه‌های پیچیده‌تری را به صورت خودکار در بیاورند یا چندین مورد را به طور همزمان ادغام کنند.

هیچ یک از این موارد تضمین واقعی برای سودآوری نیست و معامله‌گران باید بفهمند که الگوریتم صحیح یا ربات را کی و کجا پیاده‌سازی کنند. حوزه تجارت الگوریتمی نیز به همین ترتیب تکامل یافته است. در حالی که این کار با تجارت رایانه در بازارهای سنتی آغاز شد، افزایش دارایی‌های دیجیتال و مبادلات جاری در هفت روز هفته این رویه را به سطح جدیدی رسانده است.

تقریباً به نظر می‌رسد که تجارت اتوماتیک و ارزهای رمز پایه برای یکدیگر ساخته شده است. درست است که کاربران هنوز هم باید استراتژی‌های خاص خود را انجام دهند، اما اگر به درستی اعمال شود، این تکنیک‌ها می‌توانند به بازرگانان کمک کنند دست خود را از چرخ بردارند و اجازه دهند ریاضیات کار خود را انجام دهد.

بررسی دقیق تر کاربرد معاملات الگوریتمی

فرض کنید که یک فرد برای انجام معاملات خود از این معیارهای تجاری ساده پیروی می‌کند:

  1. وقتی میانگین متحرک ۵۰ روزه آن از میانگین متحرک ۲۰۰ روزه بالاتر رفت، ۵۰ سهم از سهام را می‌خرد. (میانگین متحرک میانگین دادهای نقاط گذشته است که نوسانات قیمتی را روز به روز مرتفع‌تر می‌کند و در نتیجه‌ی آن روندها مشخص می‌شوند.)
  2. فروش این سهام زمانی که میانگین متحرک ۵۰ روزه آن از میانگین متحرک ۲۰۰ روزه پایین‌تر باشد.

با استفاده از این دو دستورالعمل ساده، یک برنامه کامپیوتری به طور خودکار ارزش سهام (و شاخص‌های میانگین متحرک) را کنترل کرده و در صورت تناسب شرایط تعریف شده، سفارشات خرید و فروش را ثبت می‌کند.

فرد معامله‌گر دیگر نیازی به نظارت بر قیمت‌ها و نمودارهای متغیر و به روز یا سفارشات به صورت دستی ندارد. سیستم معاملات الگوریتمی با شناسایی فرصت صحیح معامله به صورت خودکار این کار را انجام می‌دهد.

مزایای انجام معاملات به روش الگوریتمی

مزایا معاملات الگوریتمی:

  1. معاملات با بهترین قیمت ممکن انجام می‌شود.
  2. ثبت سفارش در این نوع معاملات دقیق و سریع است. (اجرایی شدن آن در سطح دلخواه بسیار محتمل است.)
  3. بسیار اهمیت دارد که معاملات قبل از تغییرات ارزشی قابل توجه به درستی و هر چه سریع‌تر انجام شوند که به روش الگوریتمی امری امکان پذیر است.
  4. کاهش هزینه‌های معامله
  5. بررسی خودکار همزمان در شرایط مختلف بازار
  6. کاهش انواع خطاهای دستی هنگام انجام معاملات.
  7. معاملات الگوریتمی را می‌توان با استفاده از داده‌های موجود در زمان واقعی و درست مورد آزمایش مجدد قرار داد تا ببینیم آیا می‌توان این دست از معاملات را یک استراتژی مناسب و هوشمندانه در انجام معاملات تجاری بر شمرد و یا خیر.
  8. از احتمال وقوع خطاهای متعدد توسط معامله‌کنندگان انسانی (و نه ماشینی) در اثر عوامل روحی و روانی می‌کاهد.

بیشتر معاملات الگوریتمی که امروزه انجام می‌گیرد، معاملات با فرکانس بالا (HFT) هستند که تلاش می‌کند تعداد زیادی سفارش را با سرعت سریع‌تر در چندین بازار و با پارامترهای تصمیم‌گیری چندگانه بر اساس دستورالعمل‌های از پیش برنامه‌ریزی شده، ثبت کند.

معاملات الگوریتمی در اشکال مختلف معامله، خرید و فروش و فعالیت‌های متنوع سرمایه‌گذاری مورد استفاده قرار می‌گیرد از جمله:

  • سرمایه‌گذاران میان مدت و یا بلند مدت یا موسسات بازرگانی طرف خرید، صندوق‌های بازنشستگی، صندوق‌های سرمایه‌گذاری، شرکت‌های بیمه و برخی دیگر از معاملات الگوریتمی برای خرید سهام در مقادیر زیاد استفاده می‌کنند، زمانی که نمی‌خواهند با سرمایه‌گذاری‌های گسسته و پر حجم بر ارزش سهام تأثیر بگذارند.
  • سرمایه‌گذاران کوتاه مدت و شرکای طرف فروش، سازندگان بازار (مانند کارگزارها)، دلالان و داوران از مزایای معاملات خودکار بهره‌مند می‌شوند. علاوه بر این، معاملات الگوریتمی به ایجاد نقدینگی کافی برای فروشندگان در بازار کمک می‌کند.

معاملات الگوریتمی نسبت به روش‌های مبتنی بر شهود یا غریزه معامله‌گر، رویکرد سیستماتیک‌تری در معاملات فعال فراهم می‌کند.

استراتژی های معاملات الگوریتمی

هر استراتژی برای معامله خودکار (الگوریتمی) نیاز به فرصتی مشخص دارد که از نظر بهبود درآمد یا کاهش هزینه سودآور باشد. در ادامه چند نمونه از استراتژی های معاملاتی رایج را مشاهده می‌کنید:

استراتژی ‌های دنباله روی ترندها

رایج‌ترین استراتژی‌های معاملات الگوریتمی در مورد میانگین متحرک، شکست کانال، تغییرات سطح قیمت و دیگر شاخص‌های فنی مرتبط مورد استفاده قرار می‌گیرند. اینها ساده‌ترین و آسان‌ترین استراتژی‌هایی هستند که می‌توانند از طریق معاملات الگوریتمی اجرا شوند، زیرا این استراتژی‌ها پیش بینی قیمت انجام نمی‌دهند.

معاملات براساس وقوع روندهای مطلوب آغاز می‌شوند چرا که اجرای آن‌ها از طریق الگوریتم‌ها بدون وارد شدن به پیچیدگی تحلیل‌ و پیش‌بینی، آسان و ساده است. افرادی که دنباله‌ روی ترندها هستند استفاده از میانگین متحرک ۵۰ و ۲۰۰ روزه را به عنوان یک استراتژی رایج در دستور کار خود قرار می‌دهند.

فرصت‌ های آربیتراژ

آربیتراژ (Arbitrage) به معنای کسب سودی بدون ریسک از اختلاف قیمت دو بازار مختلف است، یعنی شما سهامی را از یک لیست در یک بازار خریداری می‌کنید و همان سهام را هم‌زمان در بازاری دیگر با قیمت بالاتر به فروش می‌رسانید و از این اختلاف قیمت سود می‌کنید؛ ما این سود بدون ریسک را آربیتراژ می‌نامیم. همان عملکرد را می‌توان برای سهام در مقابل ابزارهای آتی داشت؛ زیرا اختلاف قیمت در هر بازه‌ای از زمان در بازارها وجود دارد.

اجرای یک الگوریتم مشخص به منظور شناسایی این تفاوت قیمت‌ها و ثبت کارآمد سفارشات، فرصت‌های سودآوری را بدست می‌آورد.

توازن مجدد صندوق شاخص

صندوق‌های شاخص دوره‌های متعادل‌سازی مجددی را تعریف کرده‌اند تا منابع خود را با شاخص‌های معیار مربوط با آن برابر کنند. این کار فرصت‌های سودآوری را برای معامله‌گران روش الگوریتمی ایجاد می‌کند که معاملات مورد انتظار را که بسته به تعداد سهام در صندوق شاخص و قبل از به تعادل رساندن مجدد آن، ۲۰ تا ۸۰ امتیاز پایه دریافت می‌کنند، سرمایه‌گذاری می‌کنند.

این گونه معاملات از طریق سیستم‌های معاملات الگوریتمی برای اجرای به موقع و شناسایی بهترین قیمت‌ها آغاز می‌شود.

ربات معاملاتی چیست؟

در ابتدایی‌ترین سطح، یک ربات تجارت الگوریتمی یک کد رایانه‌ای است که توانایی تولید و اجرای سیگنال‌های خرید و فروش در بازارهای مالی را دارد.

اجزای اصلی چنین رباتی شامل قوانین ورود به سیستم است که هنگام خرید یا فروش سیگنال می‌دهد. قوانین خروج نشان می‌دهد که چه زمانی موقعیت فعلی و قوانین اندازه‌گیری موقعیت که مقدار خرید یا فروش را تعریف می‌کند را ترک کنید.

برای داشتن سودآوری، ربات باید کارآیی بازار را به طور منظم و مداوم شناسایی کند.

توسعه استراتژی های الگوریتمی

اولین گام در توسعه استراتژی‌های الگوریتمی، تأمل در برخی از ویژگی‌های اصلی است که هر استراتژی تجارت الگوریتمی باید داشته باشد. این استراتژی باید از نظر بازار هوشمندانه باشد.

هم‌چنین مدل ریاضی مورد استفاده در تدوین استراتژی باید بر اساس روش‌های آماری صحیح باشد.

در مرحله بعدی، تعیین کنید که ربات شما قصد دارد چه اطلاعاتی را به دست آورد. برای داشتن یک استراتژی خودکار (الگوریتمی) باید رباتی داشته باشید که قادر به ضبط ناکارآمدی‌های مداوم بازار باشد.

استراتژی‌های معاملات الگوریتمی از مجموعه‌ای از دستورالعمل‌های سخت برای بهره‌گیری از رفتار بازار پیروی می‌کنند و وقوع یک‌باره ناکارآمدی بازار برای ایجاد یک استراتژی کافی نیست.

به‌علاوه، اگر علت ناکارآمدی بازار غیرقابل شناسایی باشد، هیچ راهی برای دانستن اینکه آیا موفقیت یا شکست استراتژی به دلیل شانس بوده است یا خیر وجود نخواهد داشت.

با در نظر گرفتن موارد فوق، انواع مختلفی از استراتژی‌ها برای آگاهی از طراحی ربات تجارت الگوریتمی شما وجود دارد.

استراتژی‌هایی که از موارد زیر (یا ترکیبی از آن‌ها) بهره می‌برد:

  1. اخبار اقتصادی کلان (به عنوان مثال، حقوق و دستمزد غیر مزرعه‌ای یا تغییرات نرخ بهره)
  2. تجزیه و تحلیل اساسی (به عنوان مثال، با استفاده از داده‌های درآمد یا یادداشت‌های انتشار درآمد)
  3. تجزیه و تحلیل آماری (به عنوان مثال، همبستگی یا ادغام مشترک)
  4. تجزیه و تحلیل فنی (به عنوان مثال، میانگین متحرک)
  5. ریزساختار بازار (به عنوان مثال آربیتراژ یا زیرساخت‌های تجاری)

فراتر از الگوریتم های معاملاتی معمول

چند نوع خاص از الگوریتم‌ها وجود دارد که اتفاقاتی را که در طرف دیگر می‌افتند شناسایی می‌کنند. یک سازنده در بازار فروش برای مثال از این نوع از الگوریتم‌ها استفاده می‌کند؛ چرا که دارای هوشمندی لازم برای شناسایی وجود هر گونه الگوریتم در سمت ثبت یک سفارش بزرگ است.

چنین ردیابی از طریق الگوریتم‌ها به معامله‌گر در یک بازار کمک می‌کند تا فرصت‌های بزرگی که در انتخاب سفارشات پیش می‌آیند را شناسایی کند.

این کار گاهی اوقات به عنوان عملکردی پیشرفته شناخته می‌شود.

الزامات فنی برای معاملات الگوریتمی

به کارگیری الگوریتم با استفاده از یک برنامه رایانه‌ای آخرین مؤلفه معاملات الگوریتمی است که با آزمایش مجدد همراه است (آزمایش عملکرد الگوریتم در دوره‌های گذشته‌ی بازار سهام برای کسب اطلاع از نحوه‌ی سودآوری آن).

چالش اصلی این است که استراتژی شناسایی شده را به یک فرآیند کامپیوتری یکپارچه تبدیل کنید که برای ثبت سفارش به حساب تجاری دسترسی دارد. موارد زیر الزامات تجارت الگوریتمی است:

  • دانش برنامه‌نویسی کامپیوتری برای برنامه‌ریزی استراتژی‌های معاملاتی مورد نیاز، در صورتی که دانش برنامه‌نویسی ندارید اما مایل به انجام معاملات الگوریتمی هستید، پیشنهاد می‌شود برنامه‌نویسانی را برای این کار استخدام کنید و یا از نرم‌افزارهای پیش‌ساخته معاملاتی استفاده کنید.
  • اتصال به شبکه و دسترسی به سیستم عامل‌های تجاری برای ثبت سفارش.
  • دسترسی به فیدهای داده‌های بازار که توسط الگوریتم در موقعیت‌های ثبت سفارش کنترل می‌شوند.
  • توانایی و همچنین داشتن زیرساخت‌های خاص در مواقع نیاز به کنترل سیستم قبل از اینکه در بازارهای واقعی فعال شود.
  • داده‌های قبلی موجود برای آزمایش مجدد بسته به پیچیدگی قوانین پیاده‌سازی شده در الگوریتم.

برنامه رایانه‌ای مورد استفاده شما باید موارد زیر را انجام دهد:

  1. فید قیمت آینده سهام RDS را از هر دو بورس بخواند.
  2. با استفاده از نرخ ارز موجود، یک ارز را به ارز دیگر تبدیل کنید.
  3. اگر اختلاف قیمت قابل توجهی وجود داشته باشد (به علت حذف هزینه‌های کارگزاری) که منجر به یک فرصت سودآور می‌شود، برنامه باید بتواند سفارش خرید را در بورس با قیمت پایین‌تر قرار دهد و سفارش را در بورس با قیمت بالاتر بفروشد.

اگر سفارشات به دلخواه انجام شوند سود آربیتراژ به دنبال خواهد داشت.

شاید به نظر ساده و آسان بیاید، اما با این حال نگهداری و اجرای معاملات الگوریتمی به همین سادگی نیست. به یاد داشته باشید اگر یک سرمایه‌گذار بتواند معامله‌ای انجام دهد، سایر فعالان در عرصه‌ی تجارت در بازار نیز می‌توانند این کار را انجام دهند.

در نتیجه، قیمت‌ها در صدم ثانیه و حتی میکروثانیه نوسان می‌کنند. در مثال بالا، چه اتفاقی می‌افتد اگر یک معامله خرید انجام شود، اما معامله فروش متفاوت باشد، یعنی قیمت فروش در زمان ورود سفارش به بازار تغییر کند؟ پاسخ این است که معامله‌گر با موقعیتی آزاد روبرو خواهد شد و استراتژی آربیتراژ را بی‌ارزش می‌کند.

خطرات و چالش‌های اضافی مانند ریسک خرابی سیستم، خطاهای اتصال به شبکه، فاصله زمانی بین سفارشات و اجرا و از همه مهم‌تر الگوریتم‌های ناقص وجود دارد.

هر چه الگوریتم پیچیده‌تر باشد، آزمایش مجدد سختگیرانه‌تری قبل از عملی شدن لازم است.

استراتژی سفارش‌گذاری: تقابل واکنش بازار و ریسک اجرای معاملات

هدف: بازار بورس ایران در سال‌های گذشته تغییراتی در آن اعمال شده و در انتظار تغییرات جدی‌تر است. در این پژوهش یک مدل بهینه سفارش‌گذاری با رویکرد ریزساختار بازار ارائه شده که در ساخت بازار مصنوعی استفاده شده و در انتها عملکرد آن مورد بررسی قرار گرفته است.
روش: با کمک شبیه سازی بازار می‌توان به مواردی همچون تنظیم بازار و بررسی عملکرد استراتژی‌های معاملاتی پرداخت. اما برای کشف قیمت تابلوی ثبت سفارش سهام از شبیه‌سازی عامل‌گرا (agent-based) استفاده کرده‌ایم که الگوریتم تصمیم‌گیری آن شامل انتخاب نوع سفارش (خرید یا فروش)، انتخاب نوع اقدام معامله‌گران (ثبت سفارش جدید یا لغو سفارش در صف)، انتخاب استراتژی معاملاتی و انتخاب قیمت بهینه‌ی سفارش - برای یکی از عامل‌ها (agent) - است. از آنجاکه یکی از چالش‌های مهم سرمایه‌گذاران، یافتن قیمت بهینه‌ی سفارش‌گذاری است، در این پژوهش به این موضوع پرداخته شده است و سعی شده بازار بورس تهران به گونه‌ای شبیه‌سازی شود تا تغییرات ریزساختار بازار را مطالعه کند.
یافته‎ها: داده‌های پژوهش شامل داده‌های درون-روزی تابلوی ثبت سفارش سهم فولاد مبارکه اصفهان در 5 سطح و برای ۷۱ روز معاملاتی است. در سیستم شبیه‌سازی پژوهش، با بررسی داده‌های تاریخی سهم فولاد مبارکه اصفهان، رفتار معاملاتی عامل‌ها استخراج شده است. همچنین با توجه به بحث ریزساختار بازار، تقابل بین ریسک اجرای معاملات و کنترل واکنش بازار به عنوان یک هزینه معاملاتی، مدل‌سازی شده است. بازار برای مدت 30 روز شبیه‌سازی شده و نتایج حاکی از آن است که استراتژی سفارش‌گذاری بهینه شده، از لحاظ میانگین قیمت خرید سهم، میانگین زمان انتظار برای اجرای معامله هر سهم و میانگین حجم معامله شده از سفارش، در مقایسه با سایر استراتژی‌های مورد بررسی در بازار عملکرد بهتری داشته است.
نتیجهگیری: نتایج این پژوهش نشان می‌دهد به‌کارگیری ریسک اجرایی شدن سفارش و هزینه معاملاتی بطور هم‌زمان در استراتژی سفارش‌گذاری، عملکرد بهتری نسبت به استراتژی‌های مبتنی بر درجه‌ی تهاجمی بودن معامله‌گران بازار دارد.

کلیدواژه‌ها

  • استراتژی سفارش‌گذاری
  • ریزساختار بازار
  • شبیه‌سازی عامل‌گرا
  • معاملات الگوریتمی

20.1001.1.10248153.1397.20.2.2.2

عنوان مقاله [English]

Order Placement Strategy: Trade-off between Market Impact and Non-Execution Risk

نویسندگان [English]

  • Mohammad Ali Rastegar 1
  • Farideh Teimoory 2
  • Behnam Bagherian 3

Objective: This contribution proposes an order placement strategy which can be run on simulating continuous financial markets, within an agent-based model framework.
Methods: In order to improve the efficiency of price discovery, the order placement decision is given by an optimization model which minimizes the risk adjusted execution cost, taking into consideration relevant market microstructure factors such as market impact. The trading behavior of the agents has been extracted from intraday LOB data of Foulad Stock in Tehran Stock Exchange.
Results: The market has been simulated for 30 days and the results indicated that the optimized ordering strategy, in terms of the average purchase price of the share, the average waiting time for the transaction of each share and the average volume of the order traded, had better performance in comparison to other strategies examined.
Conclusion: We can claim that taking into consideration both non-execution risk and execution cost could raise the performance in comparison to other strategies based on the aggressive level of the traders.

کلیدواژه‌ها [English]

  • Order Placement Strategy
  • Market Microstructure
  • Agent-based Simulation
  • Algorithmic Trading

مراجع

رستگار، م.، ساعدی‌فر، خ. (۱۳۹6). استراتژی بهینة اجرای معاملات بزرگ با رویکرد شبیه‌سازی عامل‌گرا. مجله تحقیقات مالی، 19 (2)، 239-362.

پویان‌فر، ا.، راعی، ر.، شاپور محمدی. (۱۳۸۸). فرآیند شکل‌گیری قیمت‌ها در بورس تهران-رویکرد ریزساختاری. مجله تحقیقات مالی، 16 (56)، 21-38.

راعی، ر.، شواخی زواره، ع. (۱۳۸۵). بررسی عملکرد استراتژی‌های سرمایه‌گذاری در بورس اوراق بهادار -تهران. مجله تحقیقات مالی، ۸ (۲۱)، 75-96.

رستگار، م.، اقبال ریحانی، ن. (1396). مدل‌سازی غیرخطی واکنش بازار سمت خرید. مجله دانش سرمایه‌گذاری، در دست چاپ.

Aldridge, I. (2010). High Frequency Trading A practical guide to algorithmic trading strategies and trading systems. Hoboken: WILEY.

Besson, P. & Lasnier, M. (2017). The benefits of resiliency to standard market impact models. Market Microstructure and Liquidity, 3 (1) (2017) 1750007 (26 pages).

Bookstaber, R. Paddrik, M. (2015). An Agent-based Model for Crisis Liquidity Dynamics. Office of Financial Research, United States Department of Treasury.

Chiarella, C. and Iori, G. (2002). A simulation analysis of the microstructure of double auction markets. Quantitative Finance, 2 (2), 246–253.

Chiarella, C., Iori, G. & Perello, J. (2009b). The impact of heterogeneous trading rules on the limit order book and order flows. Journal of Economic Dynamics and Control, 33 (3), 525–537.

CFA (2009). Market Microstructure: The Impact of Fragmentation under the Markets in Financial Instruments Directive, CFA Institute Publications, 2009 (13), pp. 1–60.

Cont, R. (2001). Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 1 (2), 223–236.

Coppejans, M., Domowitz, I. & Madhavan, A. (2003). Dynamics of Liquidity in an Electronic Limit Order Book Market. Working paper, Duke University.

Cui, W. & Brabazon, A. (2012a). An Agent-based Modelling Approach to Study Price Impact. in Proceedings of the 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics, 1–8, IEEE Press.

Evans, M. & Lyons, R. (2002). Order Flow and Exchange Rate Dynamics. Journal of Political Economy, 110 (1), 170–180.

Farmer, J. & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460 (7256), pp. 685–686.

Farmer, J., Gerig, A., Lillo, F. & Mike, S. (2006). Market efficiency and the long-memory of supply and demand: Is price impact variable and permanent or fixed and temporary?. Quantitative Finance, 6 (2), 107–112.

Feldman, T. & Friedman, D. (2010). Human and Artificial Agents in a Crash-Prone Financial Market. Computational Economics, 36 (3), 201–229.

Gould, M., Porter, M., Williams, S., McDonald, M., Fenn, D. & Howison, S. (2011). ‘Limit order books’. Working paper.

Guo, X., Ruan, Z. & Larrard, A. (2017). Optimal placement in a limit order book: an analytical approach. Mathematics and Financial Economics, 11 (2), 189–213.

Jain, P. (2003). Institutional design and liquidity at stock exchanges around the world. Available at SSRN: https://ssrn.com/abstract=869253 or http://dx.doi.org/10.2139/ssrn.869253.

Jaisson, T. (2015). Market impact as anticipation of the order flow imbalance. Quantitative Finance, 15 (7). 1123-1135.

Kim, G. & Markowitz, H. (1989). Investment rules, margin, and market volatility. Journal of Portfolio Management, 16 (1), 45–52.

Kissell, R., Glantz, M. (2003). Optimal trading strategies: Quantitative approaches for managing market impact and trading risk, Amacom.

Kissel, R. (2014). The Science of Algorithmic Trading and Portfolio Management. Oxford: Academia Press.

Kraus, A. & Stoll, H. (1972). Price impacts of block trading on the New York Stock Exchange. Journal of Finance, 27 (3), 569–588.

Lux, T. (1998). The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails of return distributions. Journal of Economic Behavior & Organization, 33 (2), 143–165.

Mandes, A. (2015). Microstructure-based order placement in a continuous double auction agent based model. Algorithmic Finance, 105–125.

Miller, M. (2008). Don’t let your robots grow up to be traders: Artificial intelligence, human intelligence, and asset-market bubbles. Journal of Economic Behavior & Organization, 68 (1), 163–166.

Parlour, C. & Seppi, D. (2008). Limit Order Markets: A Survey, in A. V. Thakor & A. W. Boot (eds.). Handbook of Financial Intermediation and Banking, 63–96, Elsevier, Amsterdam.

Platt, D. & Gebbie, T. The Problem of Calibrating an Agent-Based Model of High-Frequency Trading. Submitted on 5 Jun 2016 to Quantitative Finance, arXiv: 1606.01495.

Pouyanfar, A., Raei, R. & Shapoor Mohammadi (2010). Transactional Prices Intraday Evidence from Tehran Stock Exchange. Financial Research Journal. Article 2, 16 (3), Serial Number 149088. (in Persian)

Raei, R., Zavareh, A. (2008). Exploration The Performance of The Investment Strategies in Tehran Stock Exchange. Financial Research Journal. Article 4, 8 (1), Serial Number 1835. (in Persian)

Rastegar, M. & Saedifar, kh. (2017). Optimal Execution Strategy: An Agent-based Approach. Journal of Financial Research, 19 (2): 239-362. (in Persian)

Rastegar, M. & Eghbal, N. (2018). The non-linear market impact Modeling: Evidence from Buy-side. Journal of Investment Knowledge, will printed. (in Persian)

Schelling, T. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1 (2), 143–186.

Smith, E., Farmer, J., Gillemot, L. & Krishnamurthy, S. (2003). Statistical theory of the continous double auction. Quantitative Finance, 3 (1), 481–514.

Tesfatsion, L. (2006). Agent-based computational economics: A constructive approach to economic theory, in L. Tesfatsion & K. Judd (eds.). Handbook of computational economics: agent-based computational economics, 52–74, Elsevier, Amsterdam.

معاملات الگوریتمی چیست؟

معاملات الگوریتمی چیست؟ تاثیر هوش مصنوعی در معاملات الگوریتمی چیست؟ آیا فرق اتو تریدینگ و الگو تریدینگ را می‌دانید؟ مزایا و معایب این نوع معاملات چیست؟ تا به‌حال نام معاملات الگوریتمی به گوشتان خورده است؟ زمانی که معاملات بورس راه افتاد هنوز رایانه‌ها به شکل امروزی در دنیای مالی نفوذ نکرده بودند و معاملات به‌صورت فیزیکی و سنتی انجام می‌شد. برای خرید و فروش یک سهم باید با ماشین یا اتوبوس به خیابان حافظ رفته و تازه قیمت روز سهم خود را روی تابلو می‌دیدید و فرم خرید و یا فروش را پر می‌کردید. اما امروز به لطف دنیای مجازی و اینترنت، پشت لپ‌تاپ شخصی خود نشسته و قیمت سهم‌ها را به‌صورت آنلاین در سایت کارگزاری می‌بینیم و معامله می‌کنیم.

معاملات الگوریتمی چیست؟

معاملات الگوریتمی یا معاملات خودکار یک ابزار برای معامله در بازارهای سرمایه است. بر این اساس شما می‌توانید با استفاده از هوش مصنوعی به‌صورت اتوماتیک و یا نیمه اتوماتیک و با استفاده از کدهای برنامه نویسی شده، موقعیت‌های مناسب در بازار را شناسایی و آن‌ها را شکار کنید.

خیلی‌ها معاملات الگوریتمی را با استراتژی معاملاتی یا فیلترنویسی اشتباه می‌گیرند. در‌صورتی که همه این‌ها زیرمجموعه‌ای از معاملات الگوریتمی هستند. درواقع معاملات الگوریتمی یک ابزار معاملاتی کامل است که شما با استفاده از این ابزار می‌توانید معاملات دقیق‌تر استراتژی های معاملات الگوریتمی و سریع‌تری انجام دهید تا خطای کار را کاهش و نتایج معاملات را بهبود بخشید.

الگوریتم‌ها می‌توانند بیش از یکی باشند و به‌صورت ترکیبی و پیچیده مورد استفاده قرار گیرند. آن‌ها برای انجام معاملات، بررسی‌های مختلفی از جمله زمان‌بندی، قیمت و حجم را در بازار انجام می‌دهند و بر اساس دیتاهای موجود برای معاملات تصمیم‌گیری می‌کنند. این ابزار کمک می‌کند تا بدون درگیر شدن احساسات، در بازار معامله کرد که در نهایت موجب افزایش حجم معاملات می‌شود.

معاملات الگوریتمی برای چه کسانی کاربرد دارد؟

هر شخصی می‌تواند از این ابزارها برای معاملات خود در بازارهای مالی استفاده کند. از این ابزار در بازارهای بورس داخلی و خارجی نظیر بورس آمریکا، فارکس و ارزهای دیجیتال استفاده می‌شود.

منتهی از این ابزار فقط به قصد گرفتن سود در بازار استفاده نمی‌شود؛ بلکه گاهی اوقات از این ابزار فقط برای سیگنال‌گیری و محدود کردن تعداد فرصت‌های معاملاتی، اردرگذاری اتوماتیک یا مدیریت ریسک و سرمایه نیز استفاده می‌شود.

پیش‌نیازهای معاملات الگوریتمی

نتیجه مطلوب از معاملات الگوریتمی نیاز به بستری مناسب برای اجرایی شدن آن دارد. بستر معاملات الگوریتمی به سه عامل مهم بستگی دارد.

مطابقت‌دهنده‌های بازار یا منبع تغذیه داده‌ها

این مطابقت دهنده‌ها فرمت اطلاعات بازار را به فرمتی که برای سیستم قابل درک باشد، تبدیل می‌کنند. همچنین دسترسی لازم به اطلاعات حساب و دیتاهای بازار فراهم می‌کنند. این کار از طریق رابط برنامه‌نویسی یا همان API که بازار معاملاتی در اختیار معامله‌گر قرار داده، انجام می‌شود.

موتور پردازش داده‌های معاملات الگوریتمی

این موتور مغز متفکر معاملات الگوریتمی است. موتور پردازش‌گر در این مرحله الگوریتم‌های برنامه‌ریزی شده توسط استراتژی‌های معاملاتی و شروط تعیین شده ما را باهم و در آن واحد روی کل بازار اعمال می‌کند و هرگاه شرایط لازم در سهمی پیدا شد، برای معامله تصمیم‌گیری می‌کند. به‌عنوان مثال فرض کنید که ما می‌خواهیم سهم‌هایی که در بازار RSI آن‌ها زیر 30 است را شناسایی کنیم. از بین صدها سهم بازار شاید برای انسان این کار بسیار زمان‌بر و دشوار باشد، اما برای یک موتور پردازش کننده بسیار راحت است.

ارسال سفارشات به بازار توسط الگوریتم‌ها

در این مرحله سفارشاتی که با الگوریتم‌های ما مطابقت دارند به بازار ارسال می‌شود. تنها نکته‌ای که اینجا مهم است این است که بستری که الگوریتم ما روی آن کار می‌کند، برای بازاری که در آن معامله می‌کنیم، قابل درک باشد.

الگوریتم‌های معاملاتی چه وظایفی دارند؟

معاملات الگوریتمی برای انجام درست و کامل بر اساس استراتژی مشخص‌ شده چهار وظیفه کلی دارند:

  • رصد و تحلیل کل بازار به‌صورت دقیق و با بیشترین سرعت ممکن
  • ثبت اردرها و پوزیشن‌گیری
  • مدیریت پوزیشن
  • مدیریت ریسک و سرمایه

هر الگوریتم معاملاتی می‌تواند هریک این چهار مورد را به‌طور کاملا اتوماتیک و با استفاده از ربات‌های معامله‌گر انجام دهد که به آن معاملات خودکار یا کاملا اتوماتیک می‌گویند. گاهی هم این چهار مورد به‌صورت ترکیبی با هوش انسانی در معاملات به‌کار گرفته می‌شود که در این‌صورت به آن معاملات نیمه خودکار می‌گویند.

طبقه‌بندی عملکردی معاملات الگوریتمی

الگوریتم‌ معاملاتی یا الگوریتم‌های معاملاتی در بازار بر اساس کارهایی که انجام می‌دهند و وظایفی که برعهده دارند، در طبقه‌بندی‌های مختلفی قرار می‌گیرند.

الگوریتم‌های اجرای معاملات

این نوع الگوریتم‌ها صرفا برای مدیریت اردرگذاری و اجرای معاملات به‌کار گرفته می‌شوند. تحلیل داده‌ها پس از پردازش برای این الگوریتم‌ها ارسال و آن‌ها براساس داده‌های موجود اقدام به اردر‌گذاری سفارشات بر اساس استراتژی تعیین شده می‌کنند. نحوه اردرگذاری در این نوع الگوریتم‌ها هم می‌تواند به‌صورت اتوماتیک و هم به‌صورت دستی باشد و الگوریتم تنها موظف به اجرای آن‌ها است.

به‌عنوان مثال فرض کنید یک شخص حقوقی می‌خواهد به اندازه 100 میلیارد تومان از یک سهم و در بازه قیمتی مشخصی خرید کند. خوب قطعا یک اردر 100 میلیارد تومانی مشکل‌ساز خواهد بود. زیرا در این صورت ممکن است قیمت تغییر کند و یا اصلا اردر ما باعث ایجاد تشکیل صف خرید شود. برای حل چنین مشکلی از الگوریتم‌های اجرای معاملات استفاده می‌شود که کار را برای ما راحت‌تر کنند. با استفاده از قابلیت مدیریت اردرها، این الگوریتم‌ها می‌توانند اردر بزرگ شما را با توجه به حجم بازار به هزاران اردر ریز تبدیل کنند تا خریدتان راحت‌تر انجام شود. این عملیات در زمان فروش نیز به همین شکل خواهد بود.

الگوریتم‌های سیگنال‌دهی

الگوریتم‌های سیگنال‌دهی همان‌طور که از اسمشان پیدا است، تنها وظیفه رصد و تحلیل بازار را بر عهده دارند و به تنهایی سودآور نیستند. این الگوریتم‌ها داده‌های کل بازار را به‌صورت همزمان زیر نظر می‌گیرند و هرگاه شرایط یک سهم با استراتژی از پیش تعیین شده ما مطابقت پیدا کرد آن را به ما گزارش می‌دهند. به‌عبارت دیگر یکی از مهم‌ترین کاربردهای این نوع الگوریتم‌ها در فیلتر بازار و شناسایی سهم‌های خوب است.

الگوریتم‌های بهینه‌ساز کننده

این الگوریتم‌ها کار پایش استراتژی و مطابقت آن با شرایط روز بازار را برعهده دارند. همان‌طور که می‌دانیم، میزان سود و ضررهای یک استراتژی در شرایط بازار صعودی و نزولی یکسان نخواهد بود. این الگوریتم‌ها، استراتژی ما را با شرایط بازار در گذشته تست می‌کنند. تغییرات بازار از گذشته تا به زمان حال را در بهینه‌ترین حالت ممکن برای ما پیدا می‌کنند و آن تغییرات را روی استراتژی ما اعمال می‌کنند.

بهینه‌سازی استراتژی می‌تواند معیارهای زیادی داشته باشد که ما بر اساس اولویت‌مان آن‌ها را برای الگوریتم‌مشخص می‌کنیم. به‌عنوان مثال ممکن است اولیت‌ها را بر اساس بیشترین سود، کمترین ضرر یا ترکیبی از این دو حالت تنظیم کنیم. این الگوریتم‌ها باعث می‌شوند تا ما بتوانیم استراتژی معاملاتی خود را با توجه به شرایط بازار همیشه به‌روز و در بهینه‌ترین حالت ممکن نگهداریم.

الگوریتم‌های تریدینگ

الگوریتم‌های تریدینگ وظیفه خرید و فروش سهم بر اساس استراتژی از قبل تعیین شده معامله‌گر را دارند. به‌عنوان مثال فرض کنید که استراتژی ما خرید پلکانی سهم در صف فروش و فروش آن در صف خرید است. بر همین اساس این الگوریتم به محض دیدن صف فروش درسهم مورد نظر عملیات خرید را آغاز و در قیمت‌های از پیش تعیین شده و صف خرید، عملیات فروش سهم را آغاز می‌کند.

این نوع الگوریتم‌ها براساس دوره زمانی ازقبل برنامه‌ریزی شده به دو نوع کم‌بسامد و پربسامد تقسیم می‌شوند.

الگوریتم‌های کم‌بسامد (LFT)

منظور از الگوریتم‌های تریدینگ کم‌بسامد (Low Frequency Trading) این است که فاصله زمان دریافت داده‌های بازار زیاد باشد. به‌عبارت دیگر در این نوع الگوریتم‌ها بالا بودن سرعت دریافت و پردازش داده‌ها خیلی مهم نیست. بر همین اساس استراتژی‌های معاملاتی در این الگوریتم‌ها برای تایم‌های میان مدت و بلند مدت برنامه‌ریزی می‌شوند.

این نوع الگوریتم‌ها باتوجه به محدودیت‌ها با شرایط بازارهای داخلی ایران سازگار هستند.

الگوریتم‌های پربسامد (HFT)

الگوریتم‌های پربسامد مخفف عبارت (High Frequency Trading) است. بر خلاف الگوریتم‌های کم‌بسامد، سرعت دریافت داده‌ها در این الگوریتم بسیار اهمیت دارد. همان‌طور که از اسمشان پیداست این الگوریتم‌ها مناسب نوسان‌گیری در تایم‌های کمتر از روزانه مورد استفاده قرار می‌گیرند. هرچه سرعت دریافت داده‌ها در این الگوریتم بیشتر باشد، دقت معامله در آن نیز بیشتر خواهد بود و الگوریتم قادر خواهد بود که در تایم‌های پایین‌تر نیز به معامله بپردازد.

به‌عنوان مثال درمقیاس بازارهای جهانی، سرعت دریافت داده‌ها در برخی از الگوریتم‌های پربسامد، به میکرو ثانیه می‌رسد؛ که آن‌ها را قادر می‌سازد تا درتایم‌های یک دقیقه و حتی کمتر نیز به معامله بپردازند. هدف از این نوع معاملات، دریافت سود کم در تعداد معاملات زیاد است.

نکته مهم دیگر این است که حتی اگر شما به همچین الگوریتمی هم دسترسی داشته باشید، ابتدا باید ببینید هسته معاملاتی بازاری که در آن کار می‌کنید، توان پردزاش داده‌ها را در چنین مقیاس سرعتی دارد یا خیر. زیرا اگر این بستر فراهم نباشد دقیقا مصداق این مثال است که شما پر سرعت‌ترین خودروی جهان را در اختیار دارید، اما در جاده‌ای خاکی. بنابراین این نوع الگوریتم‌ها در ایران با محدودیت‌های زیادی مواجه هستند و کاربرد زیادی ندارند.

درحقیقت معاملات الگوریتمی هم مثل دراختیار داشتن اینترنت یا دانش شکافتن اتم است. خوب یا بد بودن آن بستگی به نوع دیدگاه و نحوه استفاده ما از این ابزار دارد. دقیقا همان‌طور که از شکافتن اتم در علوم پزشکی استفاده شد، اما با همان دانش بمب اتم هم تولید کرده‌اند.

اهمیت استراتژی در الگوریتم‌ها

الگوریتم‌ها به تنهایی و بدون داشتن یک استراتژی سودآور نمی‌توانند کاری انجام دهند. لذا داشتن یک استراتژی سودآور با دقت بک تست بالای 90% در الگوریتم‌ها بسیار مهم و حیاتی است. درواقع الگوریتم‌های معاملاتی برای این‌که بتوانند جای ما در بازارهای مالی تصمیم بگیرند، نیاز به استراتژی دارند.

انواع استراتژی در الگوریتم‌های معاملاتی

استراتژی‌های معاملاتی در بازارهای مالی به چند دسته تقسیم‌بندی می‌شوند:

استراتژی‌های Trend Following

استراتژی‌های ترند فالویینگ یا همان دنباله‌روی روند، همان‌طور که از اسمشان مشخص است، به دنبال پیش‌بینی بازار برای آینده نیستند و همزمان با روند در نمودار، جهت معاملات خود را نیز تغییر می‌دهند. این نوع استراتژی یکی از ساده‌ترین انواع استراتژی‌ها است که طرفداران بسیار زیادی نیز در جهان دارد.

اصول و مبنای برنامه‌ریزی چنین استراتژی معاملاتی استفاده از میانگین‌های قیمتی است. سپس براساس اندیکاتور‌ها و سایر شواهد بازار اقدام به صدور سیگنال خرید و فروش در بازار می‌کنند.

استراتژی آربیتراژ (Arbitrage)

به‌طور خلاصه استراتژی آربیتراژ یعنی کسب سود از محل اختلاف قیمت در بازار. در اینجا مفهوم آربیتراژ را با ذکر مثالی برای شما بیان می‌کنیم. فرض کنید شرکتی قصد خرید کالای X را به قیمت 1000 تومان دارد. بر حسب اتفاق شما شخصی را می‌شناسید که می‌خواهد همان کالا را به قیمت 800 تومان به‌فروش برساند. خوب کار بسیار راحت است. شما تمام کالاهای فروشنده را به‌قیمت 800 تومان خریده و تمام آن را به قیمت 1000 تومان به شخص خریدار می‌فروشید. این اختلاف قیمت درواقع همان سود بدون ریسک یا همان آربیتراژ است.

در بازارهای مالی نیز این کار ممکن است. کار استراتژی‌های آربیتراژ کننده نیز همین است که تمام داده‌های قیمتی در بازارهای مختلف را باهم قیاس کنند و درصورت پیدا شدن موردی مشابه از فرصت به‌دست آمده نهایت استفاده را می‌برند. معمولا این نوع استراتژی‌ها در بازارهای متمرکز مورد استفاده قرار می‌گیرند. به‌عنوان مثال اختلاف قیمت بیتکوین در بین صرافی‌های مختلف می‌تواند یکی از این فرصت‌ها را به‌وجود آورد.

استراتژی معامله پیش از توازن در صندوق‌های شاخصی

در بازار بورس صندوق‌های سرمایه‌گذاری مختلفی وجود دارند که بر اساس شاخصی خاص (دارایی‌های مسکن، دارایی‌های طلا، اوراق قرضه و. ) مشغول به فعالیت در آن حوزه هستند. معمولا این صندوق‌ها را با شاخص همان حوزه فعالیتشان می‌سنجند. اساس کار این استراتژی این است که بازدهی صندوق‌ها تمایل دارند همیشه خود را به شاخص نزدیک کنند. بر همین اساس زمانی که بازدهی این صندوق‌ها پایین‌تر از شاخصشان باشد، به‌صورت پلکانی شروع به خرید می‌کنند و زمانی که بازدهی آن‌ها بیشتر از شاخص باشد، شروع به فروش آن‌ها می‌کنند. این نوع استراتژی‌ها می‌توانند براساس تایم فریمی که در آن معامله انجام می‌شود، کم‌بسامد (LFT) یا پربسامد (HFT) تعریف شوند.

استراتژی‌های مبتنی بر مدل ریاضی

استراتژی‌های مختلفی در بازار وجود دارند که بر اساس مدل‌های ریاضی ثابت شده، تعریف می‌شوند. مانند استراتژی دلتا، تحلیل پوششی داده‌ها و. ازجمله استراتژی‌های مبتنی بر مدل ریاضی هستند که الگوریتم‌های معاملاتی بر اساس این استراتژی‌ها برنامه‌ریزی می‌شوند. استراتژی‌های گرید تریدینگ (Grade Trading) نیزاز همین دسته استراتژی‌ها هستند که برای رسیدن به سودآوری نیاز به تحلیل ندارند.

به‌عنوان مثال فرض کنید شما با مبلغ 1 دلار در یک شرط‌بندی شیر یا خط (پرتاب یک سکه) شرکت می‌کنید و به‌صورت شانسی یک روی سکه را برای شرط‌بندی خود انتخاب می‌کنید.

دوحالت وجود دارد:

اگر ‌برنده شدید که مشکلی وجود ندارد؛ اما اگر شما برنده نشدید، مجدد روی همان طرف سکه اما به اندازه 2 دلار (دو برابر حجم اولیه) شرط‌بندی می‌کنید. این‌بار اگر ببرید، 4 دلار برنده می‌شوید، درحالی که تنها 3 دلار هزینه کرده‌اید (یک دلار سود). اگر بازهم برنده نشدید، دوباره همان شرط را با دو برابر حجم قبلی ادامه دهید (4دلار). این‌بار اگر برنده باشید، 8 دلار برنده می‌شوید درحالی که تنها 7 دلار هزینه کریده‌اید. این قضیه آن‌قدر ادامه پیدا می‌کند تا یک‌بار برنده شوید. در این‌صورت شما به‌اندازه میزان خرج کرد + 1 دلار برنده می‌شوید.

طبق احتمالات و ریاضیات این سیستم در انتها همیشه برنده خواهد بود؛ اما به شرطی که اصول مدیریت حجم و سرمایه مخصوص به خود را هم در آن رعایت کنید. این نوع استراتژی‌ها برای ورود به یک معامله نیازبه تحلیل ندارند و تنها متکی به اصول ریاضیات هستند.

استراتژی‌های گرید تریدینگ برای شروع کار حجم اولیه بالایی را نیاز دارند تا ریسک اولیه کار را کاهش دهند. بعد از این‌که استراتژی به سود نشست، دیگر خطری حساب را تهدید نکرده و بعد ازمدتی این الگوریتم به یک ماشین پولسازی تبدیل می‌شود. برای سودآوری بیشتر از این نوع استراتژی‌ها در الگوریتم‌های مدیریت سرمایه نیز می‌توان استفاده کرد.

استراتژی‌های بازگشت به میانگین سهم

ایده بازگشت به میانگین دربازارهای مالی بر این اساس استوار است که یک دارایی همواره میانگینی بین کمترین و بیشترین قیمت خودش در بازار را دارد و در زمان‌هایی که زیر کف میانگین و یا بالاتر از این میانگین قرار دارد، تمایل به برگشت به خط میانگین درآن دیده می‌شود. این نوع استراتِژی‌ها می‌توانند بر اساس نوع داده‌های تحلیلی به سه قسمت استراتژی‌های میانگین قیمتی (WAP)، ماینگین حجمی (VWAP) و میانگین زمانی (TWAP) تقسیم‌بندی شوند.

الگوریتم‌هایی که بر اساس این نوع استراتژی‌ها برنامه‌ریزی می‌شوند، بر اساس محدوده شناسایی شده و تعریف شده‌ای که در اختیار دارند، هنگامی که از محدوده مورد نظر دور می‌شوند، اقدام به خرید و فروش می‌کنند.

مزایا و معایب معاملات الگوریتمی

به‌نظر شما استفاده از ابزار معاملات الگوریتمی در بازار بورس خوب است یا بد؟

معاملات الگوریتمی؛ آینده داد و ستدهای پیشرفته

معاملات الگوریتمی؛ آینده داد و ستدهای پیشرفته

به گزارش پایگاه خبری تحلیلی رادار اقتصاد به نقل از سنا؛ مجید عبدالحمیدی کارشناس بازار سرمایه در خصوص ضرورت حضور معاملات الگوریتمی گفت: بازارسرمایه ایران در حال گذار از سیستم سنتی به سیستم هوشمند است. بر این اساس، ارکان بازارسرمایه نیز مانند کارگزاری‌ها، سرمایه‌گذاری‌ها و صندوق‌های سرمایه‌گذاری و شرکت‌های سبدگردان و مشاورسرمایه‌گذاری به زیرساخت‌ها و سیستم‌های معاملات الگوریتمی نیاز دارند تا بتوانند با سرعت عمل بالاتر در شناسایی و اجرای بهترین زمان برای معاملات در جهت کسب سود بهتر استفاده کنند. در این میان طراحی سیستم‌های هوشمند جهت کسب چنین بازده‌هایی ضروری به نظر می رسد.

عبدالحمیدی اضافه کرد: در حال حاضر، معاملات الگوریتمی آخرین روش داد و ستد در بازار سرمایه کشورهای پیشرفته محسوب می‌شود و بازار ما به تقویت این نوع معاملات نیاز دارد، اما آنچه اهمیت دارد این است که باید از طریق فرهنگ‌سازی به فراگیر شدن چنین ابزارهایی کمک کرد.

او تصریح کرد: معاملات الگوریتمی ابزاری آی‌تی محور است و اگر مسیر آن به درستی هدایت شود، به طور حتم به توسعه بازار سرمایه حتی در این شرایط کمک می‌کند.

معاملات الگوریتمی چه مزایایی دارد؟

نویسنده کتاب «استراتژی‌های معاملاتی با طعم الگوریتم» درباره مزایا و انتقادات از معاملات الگوریتمی در بازار هم گفت: در تعریف این نوع معاملات باید گفت به طور کلی، هر نوع معامله خودکار و نیمه خودکار فارغ از تعداد دستورهای ارسالی به سامانه معاملاتی، معامله الگوریتمی محسوب می‌شود. به طور کلی می‌توان مزایای معاملات الگوریتمی را در مواردی چون صرفه‌جویی در زمان، کاهش تخلفات در بازار، کنترل احساسات در مدیریت معاملات، کاهش هزینه، اجرای استراتژی‌های معاملاتی پیچیده، امکان «بک تست» یا پیش‌آزمایی خلاصه کرد.

عبدالحمیدی در توضیح این مزایا به موضوع صرفه‌جویی در زمان اشاره کرد و گفت: فعالان بازار سرمایه، ساعت‌ها زمان را صرف رصد بازار و یافتن سیگنال‌های مناسب می‌کنند، کاری که با گسترش بازار و بالا رفتن تعداد نمادها سخت‌تر و زمان‌برتر خواهد شد، اما الگوریتم‌ها، با در نظر گرفتن کل بازار و نمادهای آن به طور هم زمان، این کار را با سرعت و دقت بیشتر انجام می‌دهند.

او افزود: در بازارهای جهانی که به طور ۲۴ ساعته فعال هستند، با استفاده از الگوریتمیک ترندینگ، دیگر نیازی نیست که معامله‌گر به طور مستمر بازار را رصد کند. بر همین اساس، انجام معاملات به کمک الگوریتم‌ها درست و دقیق زمان‌بندی می‌شوند و سفارشات با سرعت بیشتر انجام می‌گیرند. نتیجه‌ این سرعت، جلوگیری از تغییرات آنی قیمت هم می‌تواند باشد.

این کارشناس بازارسرمایه بیان کرد: از طرفی با بالا رفتن سرعت ورود به معاملات یا خروج از آنها، ضرر مالی‌ای که از تاخیر در ثبت سفارش‌ها نشات میگیرد، به حد چشمگیری کاهش می‌یابد. باید در نظر بگیرید که سرعت کامپیوتر در انجام چنین کارهایی استراتژی های معاملات الگوریتمی از سرعت انسان بسیار بیشتر است.

عبدالحمیدی، کاهش تخلفات در بازار را یکی دیگر از مزایای قابل توجه استفاده از معاملات الگوریتمی دانست و گفت: به طور معمول، این انسان‌ها هستند که تخلفات را مرتکب میشوند و ماشین قادر به تخلف نیست. بنابراین، استفاده از معاملات خودکار که بدون دخالت انسان انجام می‌شود، آمار تخلفات در بازار سرمایه را تا حد زیادی کاهش می‌دهد. یکی از دلایل میل بازارهای جهانی به سوی معاملات الگوریتمی نیز همین موضوع مهم است.

او ادامه داد: کنترل احساسات در مدیریت معاملات یکی دیگر از مواردی است که در معاملات الگوریتمی وجود دارد. در واقع تعهد به استراتژی، یکی از عوامل موفقیت فعالان در بازار سرمایه است؛ اما در تصمیم‌گیری‌های انسانی، کنترل نکردن احساسات بارها منجر به اشتباهات جبران ناپذیر در بازار سرمایه شده و این تعهد را زیر سوال برده است. استفاده از معاملات الگوریتمی این ریسک را تا حد امکان پایین آورده و با حذف مداخلات احساسی، تعهد به استراتژی‌ را به بیشترین استراتژی های معاملات الگوریتمی میزان می‌رساند. همچنین، خطاهای دیگر انسانی که در انجام دستی معاملات اتفاق می‌افتد و بسیار هم مرسوم است نیز به کمک معاملات الگوریتمی به حداقل ممکن خود می‌رسد. پس، علاوه بر سرعت بخشیدن، الگوریتم‌ها درصد دقت معاملات را هم بالا می‌برند و در این روش، سفارشات سریع‌تر و دقیق‌تر از حالت دستی و سنتی انجام می‌شود.

این کارشناس بازارسرمایه با اشاره به امکان کاهش هزینه ها توسط معاملات الگوریتمی گفت: معاملات الگوریتمی فقط هزینه پیاده‌سازی و خدمات مرتبط با آن‌ها را استراتژی های معاملات الگوریتمی برای معامله‌گر به همراه دارد و سرمایه‌گذار موظف به پرداخت کارمزد تحقیقات تحلیلی به هیچ کارگزاری نیست.

او افزود: از آنجا که الگوریتم‌های معاملاتی به کمک کامپیوترها انجام می‌شوند، می توانند استراتژی‌های پیچیدهای را پیاده‌سازی کرده و از چند استراتژی به صورت همزمان استفاده کنند. آنچه در روش‌های دستی شاید غیر ممکن یا بسیار دور از تحقق باشد.

عبدالحمیدی گفت: امکان بک‌تست (BackTest) یا پس‌آزمایی، نیز امکانی است که در معاملات الگوریتمی وجود دارد. در این روش می‌توان به بررسی عملکرد یک استراتژی معاملاتی با استفاده از داده‌های گذشته پرداخت. در واقع، بک‌تست به سرمایه‌گذار این امکان را می‌دهد تا استراتژی معاملاتی خود را با داده‌های تاریخی شبیه‌سازی کرده و پیش از درگیر کردن سرمایه و اجرای واقعی در بازار، ریسک و سودآوری آن را ارزیابی کند.

انتقادات پیرامون معاملات الگوریتمی
این کارشناس بازارسرمایه در خصوص انتقادات نسبت به معاملات الگوریتمی بیان کرد: واکنش‌ انسان‌ها نسبت به اطلاعات، تاثیر بسیار زیادی بر بازارها می گذارد و براین اساس همه این اطلاعات را نمی توان به‌طور سیستماتیک شناسایی و درک کرد؛ همچنین، فرآیندی که افراد مختلف اطلاعات را تحلیل می‌کنند نیز لزوماً نمی تواند سیستماتیک باشد.

او در توضیح بیشتر این موضوع گفت: آیا باید اخراج CEO یک شرکت را یک خبر خوب تلقی کنیم یا یک خبر بد؟ ممکن است یک معامله‌گر تصور کند که این اخراج، نشان‌دهنده بی‌ثباتی در بالاترین سطح شرکت بوده و در نتیجه، یک خبر فاجعه‌بار است و معامله‌گر دیگری معتقد باشد که این تصمیم درستی بوده و تسلط هیات مدیره بر امور شرکت را نشان می‌دهد. همانطور که می‌بینید، تصمیمات انسان‌ها به بازارها جهت می‌دهد و رفتار انسان‌ها را نمی‌توان مدلسازی کرد.

عبدالحمیدی افزود: در مورد این انتقاد نیز باید بدانید که بشر تاکنون بسیاری از فرایندهایی را خودکار کرده که پیشتر به طور دستی انجام می داده است. البته، هنوز هم کارهای بسیار زیادی هستند که خود انسان‌ها باید آنها را انجام دهند و قابل خودکارسازی نیستند؛ با این حال، همچنان فرایندهای بسیاری وجود دارند که انجام اتوماسیون آنها باصرفه‌تر از انجام دستی آنها است. این نوع فرآیندها، انجام معاملات را نیز در بر می‌گیرد. البته، در بهترین حالت، مدل‌های ریاضی می‌توانند دنیای واقعی را شبیه‌سازی کنند. در نتیجه، انتظار نداریم که مدل‌های الگوریتمی کامل و بدون نقص باشند.

او با اشاره به انتقادی دیگر در خصوص معاملات الگوریتمی تصریح کرد: برخی معتقدند که معاملات الگوریتمی موجب تشدید نوسانات بازار می شود، البته این انتقاد تا حدی صحیح است؛ زیرا بسیاری از مدیران مالی که مدیران الگوریتمی را هم در بر میگیرد، در معرض نوعی ریسک «مدلسازی» هستند که علت آن، مطرح کردن سوالات نادرست و استفاده از تکنیک های غلط است.

این کارشناس بازارسرمایه با اشاره به مثالی در این خصوص توضیح داد: برای مثال، روشی مانند VaR دارای فرضیات نادرست فراوانی درمورد بازار است و استفاده از آن می‌تواند منجر به نتایج نامطلوب شود. وظیفه کامپیوترها این نیست که مفروضات انسان ها را قضاوت کنند و این خطا کاملاً مربوط به قضاوت خود انسان است. معامله گران الگوریتمی نمی‌توانند رویدادهای غیرمعمول یا تغییرات ناگهانی در بازار را مدیریت کنند. شاید این معتبرترین انتقادی باشد که به معاملات الگوریتمی وارد شده است. معامله‌گران الگوریتمی برای پیش‌بینی آینده، متکی بر داده‌های تاریخی هستند. به همین دلیل، این احتمال وجود دارد که در زمان‌هایی که تغییرات سریع و قابل توجهی در رفتار بازار رخ ‌دهد، آنها از آن آسیب ببینند.

عبدالحمیدی تاکید کرد: تاکید می‌کنم رویدادی برای معامله گران الگوریتمی مهم است که باعث تغییر جدی استراتژی های معاملات الگوریتمی در شرایط بازار شود و بدون هشدار قبلی باشد. بحران سال ۲۰۰۸، ‌ شاید مهم‌ترین اتفاقی باشد که در تاریخ معاملات الگوریتمی رخ داده و چنین شرایطی را داشته است. در این دوره زمانی ۱۳ ماهه، معامله گران الگوریتمی با یک بحران نقدشوندگی جدی مواجه بودند. با این حال، در زمان به نسبت کوتاهی، بسیاری از معامله‌گران الگوریتمی، استراتژی‌های الگوریتمی خود را با این شرایط وفق دادند که همین امر هم منجر به عملکرد فوق‌العاده آنها در اواخر سال ۲۰۰۸ شد.

مقالات مرتبط

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برو به دکمه بالا